
二酸化炭素電解還元評価装置について

•1つめのセルでは、定電流ガス反応 部において、 CO_2 を電解還元 •2つめのセルでは反応後のガスを測

のセルからなる

•2つめのセルでは反応後のカスを測 定部に導入、H₂, CO定量を行う

・任意の割合でN。希釈したCO。ガスを

二酸化炭素電解還元反応セルに導入

・電解還元評価装置は、連続する2つ

- ・必要に応じて、反応後ガスを質量分析器で定量
- ・燃料電池の原理によるCO₂ガスの反応、及び追跡を行うため、定量評価が容易
- ·CO₂電解還元触の開発·評価に最適

左上: CO₂ガス反応部とH₂, CO定量部下: 反応コントローラ及びセンサー表示部

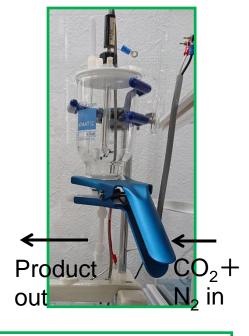
(株)つくば燃料電池研究所 Tel & FAX: 029-896-6381

E-mail: okada.t@angel.ocn.ne.jp

小型混合ガス幾生器

- N₂希釈CO₂ガスを電解
 還元半セルに導入
- 予めCO₂濃度計で希釈 律/濃度関係を求めて おく
- ガス分析半セルの出口 ガスCO₂濃度をCO₂濃度 計で測定
- ガス分析半セルで測定したCO, H₂濃度と出口ガスCO₂濃度から、CH₄, C₂H₄など有機物への添加率を推定

CO2 gas tank(左)とN2 gas tank(右)、 及び流量計

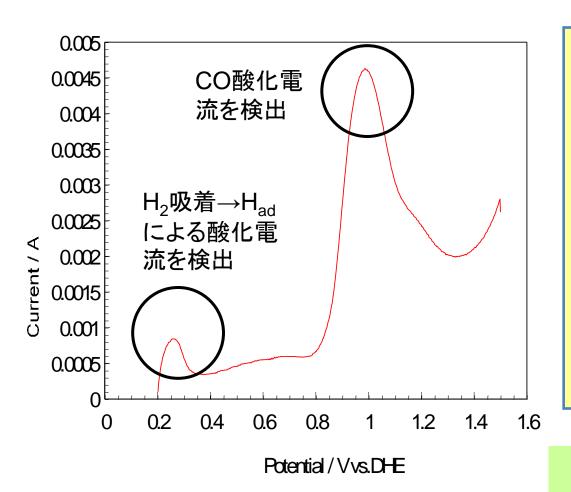

(株)つくば燃料電池研究所

Tel & FAX: 029-896-6381

E-mail: okada.t@angel.ocn.ne.jp

片側MEA上でのガス反応 及び生成物の分析

Gas out Gas in


右: CO_2 を含むガスの電解還元半セル \rightarrow 種々の濃度において CO_2 電解還元反応を実施

左: CO_2 電解還元反応後のガスを分析 する半セル \rightarrow Product gas中の H_2 及び CO濃度を検出 \rightarrow 有機物転化率を推定

- ・触媒層を含む片側半セルを用いた電解還元半セル
- ・反応後ガス成分を分析するガス 分析半セル
- ・2つの半セルを直列に配置
- ・電解還元半セル内反応 $CO_2 \rightarrow CO \rightarrow CH_4$, C_2H_4 , C_2H_5OH $H2O + e \rightarrow \% H_2 + OH_2$
- ・ガス分析半セル内反応 CO + H₂O → CO2 + 2H⁺ + e H2 → 2 H"; + 2e₋

(株)つくば燃料電池研究所 Tel & FAX: 029-896-6381 E-mail: okada.t@angel.ocn.ne.jp

ガス分析半セルの原理

- ガス分析半セルに入ってきたガスをPtを含む片側MEAのガス電極に導入
- 3電極系でCVを測定し 、繰り返しscan
- CO被毒によるH_{ad}ピークの変化、およびCO 酸化ピークよりH₂及び CO濃度を検出

(株)つくば燃料電池研究所

Tel & FAX: 029-896-6381

E-mail: okada.t@angel.ocn.ne.jp